

¹Fertility and Reproductive Endocrinology Division, Department of Obstetrics and Gynecology, Faculty of Medicine Udayana University/Sanglah Hospital:

²Gynecologic Oncology Division, Department of Obstetrics and Gynecology, Faculty of Medicine Udayana University/Sanglah Hospital;

³Maternal-Fetal Division, Department of Obstetrics and Gynecology, Faculty of Medicine Udayana University/Sanglah Hospital;

⁴Department of Obstetrics and Gynecology, Faculty of Medicine Udayana University/Sanglah Hospital.

*Correspondence:

Anak Agung Ngurah Anantasika; Fertility and Reproductive Endocrinology Division, Department of Obstetrics and Gynecology, Faculty of Medicine Udayana University/Sanglah Hospital; anantasika@gmail.com

Received: 2025-04-17 Accepted: 2025-06-06 Published: 2025-06-19

Polycycstic Ovarian Syndrome (PCOS) in adolescents: a literature review

Anak Agung Ngurah Anantasika^{1*}, I Nyoman Bayu Mahendra², I Wayan Artana Putra³, Kadek Ary Widayana⁴

ABSTRACT

PCOS is a common endocrine disorder in women of reproductive age, with a prevalence of 5-18%. In adolescents, prevalence rates are lower, with studies indicating rates of 0.8% in the United States and 3% in Iran. The condition is characterized by clinical hyperandrogenism, menstrual irregularities, and polycystic ovarian morphology. The development of PCOS is influenced by multiple factors, including genetic predisposition, insulin resistance, obesity, and hormonal imbalances. Increased luteinizing hormone (LH) and insulin resistance drive excess androgen production in the ovaries. Insulin enhances the effects of LH, contributing to hyperandrogenism and anovulation. Obesity exacerbates symptoms by increasing androgen production and worsening insulin resistance. PCOS is diagnosed based on clinical, biochemical, and ultrasound findings. Hyperandrogenism is evaluated by measuring testosterone levels, and polycystic ovarian morphology is assessed via ultrasound. Imaging studies such as transvaginal ultrasound and MRI may be used when clinical findings are unclear. Management strategies include lifestyle modification, pharmacological therapies, and cosmetic treatments. Lifestyle changes, including diet and exercise, are first-line therapies. Oral contraceptives, antiandrogens, and metformin are commonly used to control symptoms. The goal is to improve quality of life and prevent long-term complications such as metabolic syndrome and type 2 diabetes. PCOS in adolescents requires individualized management to address both immediate symptoms and long-term health risks. Early intervention can improve outcomes and prevent complications associated with the syndrome.

Keywords: polycystic ovarian syndrome, PCOS, adolescents, endocrine. **Cite This Article:** Anantasika, A.A.N., Mahendra, I.N.B., Putra, I.W.A., Widayana, K.A. 2025. Polycycstic Ovarian Syndrome (PCOS) in adolescents: a literature review. *Bali Obstetrics and Gynecology Journal* 1(1): 7-12

INTRODUCTION

Adolescence is a dynamic developmental phase. The World Health Organization (WHO) defines adolescence as the period between the ages of 10 and 19, marked by significant changes in physical growth and development. Polycystic ovary syndrome (PCOS) is a common endocrine disorder primarily found in women of reproductive age.1,2,3 A meta-analysis reveals that PCOS affects 5-18% of women of reproductive age. In India, the prevalence of PCOS among women aged 15-19 years is 22.6% based on the Rotterdam criteria and 9.8% according to the Androgen Excess and PCOS Society (AES-PCOS) criteria.3 Population-based studies on the prevalence of PCOS in adolescents are rare, with an estimated prevalence of 0.8% in the United States and 3% in Iran.4

Adrenal and Ovarian Steroid Biosynthesis

Initial stimulation of the theca cells by luteinizing hormone (LH) leads to the conversion of cholesterol into androstenedione (Figure 1). Testosterone synthesized from androstenedione in the theca cells by the enzyme 17β-hydroxysteroid dehydrogenase (17β-HSD) before being converted into Androstenedione dihydrotestosterone. diffuses into granulosa cells, where it is converted into estrone, catalyzed by follicle-stimulating hormone The conversion of estrone to estradiol is facilitated by 17β-HSD [5,6]. Concurrently, adrenocorticotropic hormone (ACTH) stimulates steroid biosynthesis in the adrenal cortex (Figure 2).5,6

Prior to the formation of progesterone by 3β -hydroxysteroid dehydrogenase (3β -HSD), pregnenolone is synthesized in the zona glomerulosa. Pregnenolone and progesterone are subsequently

17α-hydroxylase catalyzed by into 17-hydroxypregnenolone and 17-hydroxyprogesterone (17-OHP), respectively, in the zona fasciculata. These intermediates are then converted into dehydroepiandrosterone (DHEA) androstenedione. DHEA may also be converted into androstenedione, which is further transformed into testosterone and estrone. Additionally, androgens are produced in the liver, adipocytes, and skin.5,6

The Pathogenesis of PCOS in Adolescents

1. Potential Factors

An in vitro study demonstrates that excess expression of LH receptors and steroidogenic enzymes, such cytochrome P450c17, 3β-HSD, and 17β-HSD, results in increased production like of steroids 17-OHP and testosterone compared to controls without PCOS. During puberty, the maturation of

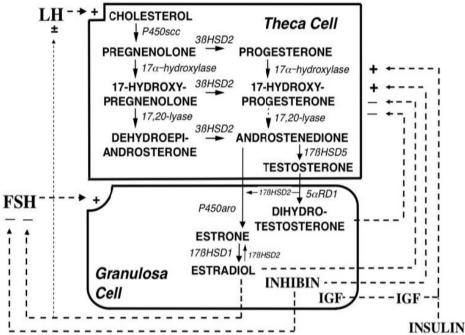


Figure 1. Formation and regulation of steroid biosynthesis in ovarian antral follicles.⁶

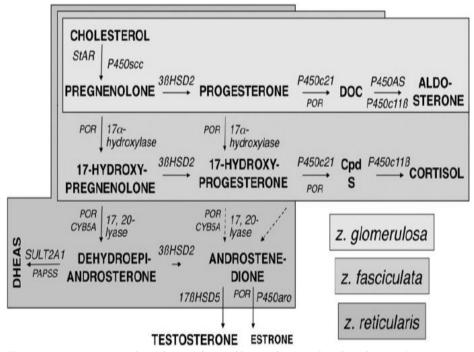


Figure 2. Formation and regulation of steroid biosynthesis in the adrenal cortex.⁶

hypothalamic-pituitary-ovarian axis leads to increased LH levels, which are elevated in women predisposed to PCOS, further increasing androgen production. Adolescents with PCOS exhibit increased frequency and amplitude of gonadotropin-releasing hormone (GnRH) and LH, as well as an elevated LH to FSH ratio.^{5,7} Theca cells produce androgens

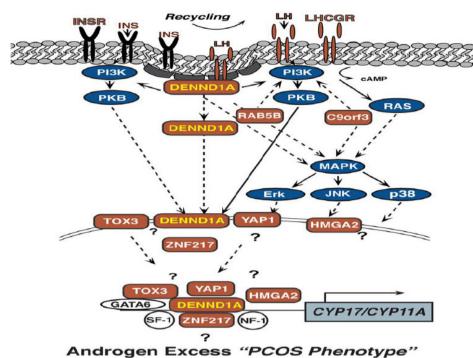
under the influence of LH and other intracrine factors. P450c17 activity is a rate-limiting step in androgen synthesis. Increased expression of P450c17 (CYP17A1) has been observed in theca cells from women with PCOS. Hyperinsulinemia, commonly associated with PCOS, enhances the theca cell response to circulating LH, and ovaries in PCOS

exhibit increased enzyme expression from alternative signaling pathways for dihydrotestosterone production.^{8,9}

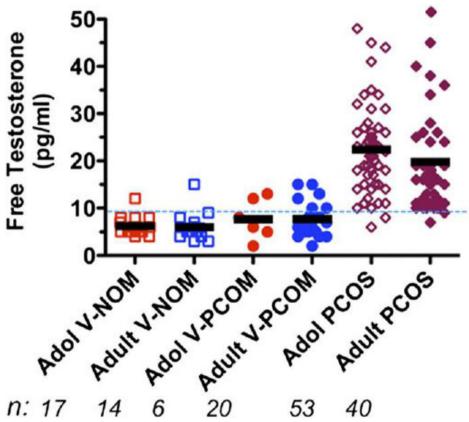
2. The Role of Insulin and Obesity

During puberty and adolescence, insulin resistance increases, and serum fasting insulin concentrations rise. Elevated insulin levels decrease the production of sex hormone-binding globulin (SHBG) in the liver, leading to higher free sex steroid levels. Insulin enhances steroidogenesis in theca and granulosa cells through LH stimulation. Despite systemic insulin resistance in PCOS, the ovaries remain sensitive to insulin. Insulin resistance and hyperinsulinemia play a central role in the pathogenesis of PCOS and contribute to anovulation by inhibiting follicular maturation [10]. Obesity exacerbates insulin resistance and hyperandrogenism in PCOS. Excess adipose tissue contributes to increased androgen levels because it contains steroidogenic enzymes that convert androstenedione into testosterone and testosterone into the more potent DHT.5,6

3. Genetic Factors


Key genes associated with steroidogenesis in PCOS include CYP17A1, CYP19, CYP21, HSD17B5, and HSD17B6. Genes related to insulin biosynthesis and function (INS), insulin receptor (INSR), and insulin receptor substrate (IRS1, IRS2) are also implicated in PCOS. Additionally, genes related to obesity, such as FTO, and cytokines like tumor necrosis factor- α (TNF- α) and interleukins (IL-6, IL-1A, IL-1B) contribute to chronic inflammation in PCOS. 5,12

Genome-wide association studies (GWAS) in Han Chinese women identified 11 loci strongly associated with PCOS. These findings were validated in Caucasian populations, and the gene *Differentially Expressed in Normal and Neoplastic Development isoform A1* (DDEND1A) was identified as a strong marker of risk. 13,14


4. Environmental Factors

Environmental and lifestyle factors contribute to the pathogenesis of PCOS. Endocrine-disrupting chemicals (EDCs), such as phthalates

GWAS Candidate Signaling Cascades?

Figure 3. Hypothesis model of the GWAS signaling cascade involved in the pathogenesis of PCOS ¹⁴

Figure 4. Serum testosterone levels in normal adolescent and adult women after menarche normal ovarian morphology (V-NOM) compared with polycystic ovary morphology (V-PCOM) and PCOS.¹⁶

and bisphenol A (BPA), are present in food packaging and medical equipment. EDCs can affect hormone biosynthesis and metabolism, leading to various reproductive disorders, including PCOS.^{5,15}

Polycystic Ovary Syndrome Diagnosis Criteria in Adolescents

Clinical manifestations of PCOS include clinical hyperandrogenism (hirsutism, acne, and alopecia) and menstrual disorders (primary secondary or amenorrhea, oligomenorrhea, irregular menstrual periods, and heavy menstrual Hyperandrogenemia bleeding). adolescents is likely a consequence of incomplete maturation of hypothalamic-pituitary-ovarian axis, as well as prolonged anovulatory cycles typical of pubertal development. These cycles, however, are not an early manifestation of PCOS. Testing of total and/or free testosterone levels is recommended to assess hyperandrogenism. An elevated serum free testosterone level is the most sensitive indicator for hyperandrogenism (Figure 4).16

It remains unclear when persistent oligomenorrhea in adolescents becomes a significant clinical finding for PCOS. Insulin resistance and hyperinsulinemia are commonly observed in women with PCOS and may affect the development of the syndrome in some patients. However, the current definition of PCOS in adolescents does not include obesity, insulin resistance, or hyperinsulinemia as diagnostic criteria. ^{2,17-19}

The Endocrine Society clinical guidelines recommend diagnosing PCOS in adolescents using criteria for hyperandrogenism and persistent anovulatory menstrual disorders that cannot be explained by other causes. The evidence supporting this recommendation is limited, prompting The Pediatric Endocrine Society to invite representatives from pediatric, adult, and reproductive endocrinologists, adolescent medicine specialists, and the subspecialty of adolescent gynecology to discuss the appropriate criteria for diagnosing PCOS in adolescents.16

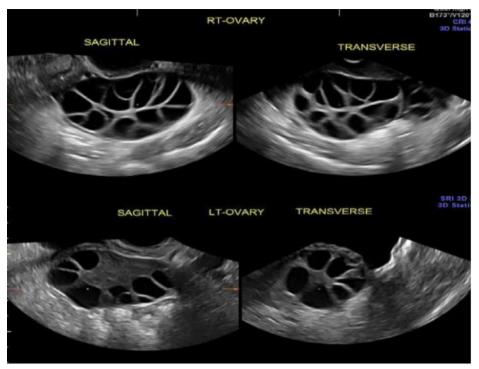
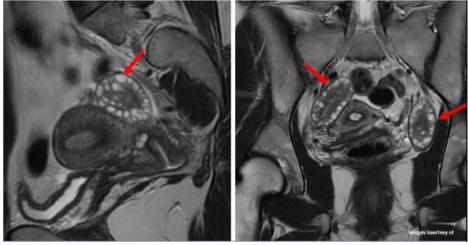



Figure 5. Display of TVS examination on PCOS.²⁰

Figure 6. Display of MRI examination on PCOS.²¹

Imaging studies can be used to confirm the diagnosis of PCOS when clinical and laboratory evaluations are unclear (Figure 5). Transvaginal ultrasound is the preferred modality for this purpose. In cases where clinical and laboratory findings are uncertain, MRI can serve as an accurate diagnostic imaging modality (Figure 6).^{20,21}

Management of Polycystic Ovarian Syndrome in Adolescents

Management of PCOS in adolescents should be individualized to meet each patient's needs. The goal of treatment is to improve quality of life, achieve long-term health outcomes, and manage the side effects of treatment. While there is no specific treatment targeting the underlying causes and pathophysiology of PCOS, therapy generally consists of two components: first, controlling the symptoms of hyperandrogenism (hirsutism, acne, irregular menstrual cycles, or infertility); and second, preventing long-term morbidity associated with PCOS (e.g., metabolic syndrome, type 2 diabetes, emotional health, and self-confidence). Effective communication with adolescents regarding their concerns

is crucial for engagement and adherence to the treatment plan. Available therapeutic options include lifestyle interventions, local cosmetic therapy, pharmacological therapy, and combined therapies.^{5,13,17,22}

Lifestyle modification is considered the first-line therapy for all PCOS patients. A small randomized clinical trial in adolescents showed that a healthy lifestyle (dietary restrictions with intense exercise) increased the number of menstrual cycles, decreased hirsutism scores, and reduced testosterone levels by increasing SHBG. One study comparing exercise to a lowcalorie diet found that the exercise group had a higher ovulation rate (65% vs 25%) and pregnancy rate (6.2% vs 1.7%). Both groups showed improvements in body weight, androgen levels, fasting glucose, and insulin resistance. The diet group showed a greater reduction in body weight (10% vs 5%) and a greater decrease in androgen levels, whereas the exercise group showed a greater increase in SHBG levels, reduced testosterone, free androgen index, and insulin resistance compared to the diet group.23,24

Cosmetic hair removal methods for managing hirsutism include bleaching, chemical epilation, plucking, waxing, shaving, electrolysis, and laser hair removal. Electrolysis can result in permanent hair removal, although its efficacy and safety have not been consistently supported by randomized controlled trials (RCTs).¹⁷

Combined oral contraceptives (COCs) containing estrogen (ethinylestradiol) and progestin (progesterone) are considered first-line treatment for adolescents with PCOS to reduce hyperandrogenism and/ or regulate menstrual cycles. The estrogen component increases SHBG levels, which reduces the bioavailability of testosterone by binding to free steroids, ultimately alleviating symptoms of androgen excess. Progestins lower LH levels, reducing ovarian androgen production. COCs also provide menstrual regulation and endometrial protection. 5,17,25,26

A meta-analysis on metformin use, with or without lifestyle changes, in PCOS patients in 2014 demonstrated beneficial effects on BMI and menstrual cycles. Observational studies and six clinical trials found short-term benefits of metformin in adolescents with PCOS,

particularly those who are overweight or obese. A recent meta-analysis comparing metformin and COCs, including four RCTs with 170 adolescents, showed that both treatments provided similar benefits for hirsutism, triglyceride levels, and HDL cholesterol. 17,25,27,28

Antiandrogen therapies for PCOS include androgen receptor blockers (spironolactone and flutamide), thirdgeneration progestins (cyproterone acetate), and 5α-reductase inhibitors (finasteride). However, RCTs directly comparing antiandrogens in adolescents with PCOS are lacking. Spironolactone is commonly used due to its availability and safety, with an initial dose of 25 mg/ day gradually increased to a maximum of 200 mg/day. Initial treatment with spironolactone may be associated with transient irregular menstruation, spotting, breast pain, and sometimes fatigue or orthostasis due to decreased blood volume. Treatment with antiandrogens significantly reduces hirsutism compared to placebo, and when combined with metformin, it leads to better outcomes normalizing menstrual cycles improving endocrine-metabolic and variables. 17,29

CONCLUSION

Polycysticovarysyndrome(PCOS)isalongrecognized, complex familial disorder. The pathogenesis of PCOS involves multiple biological systems, including changes in steroidogenesis, ovarian folliculogenesis, neuroendocrine function, metabolism, insulin secretion and sensitivity, adipose cell function, inflammatory factors, and sympathetic nerve function. PCOS is characterized by ovulatory dysfunction, hyperandrogenism, and polycystic ovarian morphology based on ultrasonography. In adolescents, clinical manifestations of PCOS include hyperandrogenism (hirsutism, acne, alopecia) and menstrual disorders (primary or secondary amenorrhea, oligomenorrhea, irregular menstrual periods, and heavy menstrual bleeding). Testing of total and/or free testosterone levels is recommended to assess hyperandrogenism. The upper limit for total testosterone is generally considered to be 55 ng/dL, while for free testosterone, it is 9 pg/dL. Polycystic

ovary morphology in adult women, according to consensus criteria, is defined as an ovary with a volume >10.0 mL or a small antral follicle 2-9 mm in diameter, with a count of ≥12 follicles. The same criteria are found in onethird to one-half of normal adolescents. The primary goal of treatment is to improve the quality of life and obtain longterm health outcomes while balancing treatment side effects. Treatment involves two components: controlling hyperandrogenism symptoms (hirsutism, acne, irregular menstrual cycles, or infertility) and preventing long-term morbidity (metabolic syndrome, type 2 diabetes, emotional health, and selfconfidence).

ETHICAL CONSIDERATIONS

Not Applicable.

DECLARATION OF CONFLICTING INTERESTS

The author(s) declared no potential conflicts of interest concerning this article's research, authorship, and/or publication.

FUNDING

The author(s) received no financial support for this article's research, authorship, and/ or publication.

AUTHOR CONTRIBUTIONS

All authors contributed to data gathering, analysis, drafting, and revising and approving the article regarding this research to be published.

REFERENCES

- Pardede N. Masa remaja. In: Narendra M, Sularyo T, Soetjiningsih, Suyitno H, Ranuh I, Wiradisuria S, editors. Tumbuh kembang anak dan remaja. Jakarta: Sagung Seto; 2002. p. 138– 70
- Peña AS, Metz M. What is adolescent polycystic ovary syndrome? J Paediatr Child Health. 2018 Apr;54(4):351–5.
- Naz MSG, Tehrani FR, Majd HA, Ahmadi F, Ozgoli G, Fakari FR, et al. The prevalence of polycystic ovary syndrome in adolescents: A systematic review and meta-analysis. Int J Reprod Biomed (Yazd). 2019 Aug;17(8):533– 42.
- 4. Christensen SB, Black MH, Smith N, Martinez MM, Jacobsen SJ, Porter AH, et al. Prevalence

- of polycystic ovary syndrome in adolescents. Fertil Steril. 2013 Aug;100(2):470–7.
- Rothenberg SS, Beverley R, Barnard E, Baradaran-Shoraka M, Sanfilippo JS. Polycystic ovary syndrome in adolescents. Best Practice & Research Clinical Obstetrics & Gynaecology. 2018 Apr;48:103–14.
- Rosenfield RL, Ehrmann DA. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyper-androgenism Revisited. Endocr Rev. 2016;37(5):467–520.
- Franks S. Polycystic ovary syndrome in adolescents. International Journal of Obesity. 2008;7.
- 8. Marti N, Galván JA, Pandey AV, Trippel M, Tapia C, Müller M, et al. Genes and proteins of the alternative steroid backdoor pathway for dihy-drotestosterone synthesis are expressed in the human ovary and seem enhanced in the polycystic ovary syndrome. Mol Cell Endocrinol. 2017 05;441:116–23.
- O'Reilly MW, Kempegowda P, Jenkinson C, Taylor AE, Quanson JL, Storbeck K-H, et al. 11-Oxygenated C19 Steroids Are the Predominant Androgens in Polycystic Ovary Syndrome. J Clin Endocrinol Metab. 2017 01;102(3):840-8.
- Rojas J, Chávez M, Olivar L, Rojas M, Morillo J, Mejías J, et al. Polycystic Ovary Syndrome, Insulin Resistance, and Obesity: Navigating the Patho-physiologic Labyrinth. Int J Reprod Med [Internet]. 2014 [cited 2019 Aug 7];2014.
- Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012 Dec;33(6):981– 1030
- Zhao H, Lv Y, Li L, Chen Z-J. Genetic Studies on Polycystic Ovary Syndrome. Best Pract Res Clin Obstet Gynaecol. 2016 Nov;37:56–65.
- Dabadghao P. Polycystic ovary syndrome in adolescents. Best Pract Res Clin Endocrinol Metab. 2019 Apr 13;
- McAllister JM, Legro RS, Modi BP, Strauss JF. Functional genomics of PCOS: from GWAS to molecular mechanisms. Trends Endocrinol Metab. 2015 Mar;26(3):118–24.
- Diamanti-Kandarakis E, Bourguignon J-P, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009 Jun;30(4):293–342.
- Rosenfield RL. The Diagnosis of Polycystic Ovary Syndrome in Adolescents. Pediatrics. 2015 Dec;136 (6):1154–65.
- Ibáñez L, Oberfield SE, Witchel S, Auchus RJ, Chang RJ, Codner E, et al. An International Consortium Update: Pathophysiology, Diagnosis, and Treatment of Polycystic Ovarian Syndrome in Adolescence. Horm Res Paediatr. 2017;88(6):371–95.
- Witchel SF, Oberfield S, Rosenfield RL, Codner E, Bonny A, Ibáñez L, et al. The Diagnosis of Polycystic Ovary Syndrome during Adolescence. Horm Res Paediatr. 2015 Apr 1;
- Carmina E, Oberfield SE, Lobo RA. The diagnosis of polycystic ovary syndrome in

- adolescents. Am J Obstet Gynecol. 2010 Sep;203(3):201.e1-5.
- Youngster M, Ward VL, Blood EA, Barnewolt CE, Emans SJ, Divasta AD. Utility of ultrasound in the diagnosis of polycystic ovary syndrome in adolescents. Fertil Steril. 2014 Nov;102(5):1432–8.
- Kenigsberg LE, Agarwal C, Sin S, Shifteh K, Isasi CR, Crespi R, et al. Clinical utility of magnetic resonance imaging and ultrasonography for diagnosis of polycystic ovary syndrome in adolescent girls. Fertil Steril. 2015 Nov;104(5):1302-1309.e1-4.
- Deans R. Polycystic Ovary Syndrome in Adolescence. Medical Sciences. 2019 Oct;7(10):101.
- Kowalik A, Rachoń D. Dietary inter-ventions in the treatment of women with polycystic ovary syndrome. Nutri-tion, Obesity & Metabolic Surgery. 2014 Jan 1;1:14–9.

- Hestiantoro A, Natadisastra M, Wiweko
 B. Current Updates on Poly-cystic Ovary
 Syndrome Endome-triosis Adenomyosis.
 Jakarta: Sagung Seto; 2014.
- Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L, et al. Recommendations from the internati-onal evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil Steril. 2018;110(3):364– 79
- Mastorakos G, Koliopoulos C, Creatsas G. Androgen and lipid profiles in adolescents with polycystic ovary syndrome who were treated with two forms of combined oral contraceptives. Fertil Steril. 2002 May;77(5):919–27.
- Hoeger K, Davidson K, Kochman L, Cherry T, Kopin L, Guzick DS. The Impact of Metformin, Oral Contra-ceptives, and Lifestyle Modification on Polycystic Ovary Syndrome in

- Obese Adolescent Women in Two Randomized, Placebo-Controlled Clinical Trials. The Journal of Clinical Endocrinology & Metabolism. 2008 Nov;93(11):4299–306.
- 28. Ladson G, Dodson WC, Sweet SD, Archibong AE, Kunselman AR, Demers LM, et al. Effects of metformin in adolescents with polycystic ovary syndrome undertaking lifestyle therapy: a pilot randomized double-blind study. Fertil Steril. 2011 Jun 30;95(8):2595-2598.e1-6.
- de Zegher F, Ibáñez L. Therapy: Low-dose flutamide for hirsutism: into the limelight, at last. Nat Rev Endocrinol. 2010 Aug;6(8):421–2.

This work is licensed under a Creative Commons Attribution